
i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 181 -- #217 i
i

i
i

i
i

7Programmability

We’ve touched several times on the ability of LATEX to be reprogrammed. This is
one of its central features, and one that still, after nearly a quarter of a century,
puts it well above many other typesetting systems, even those with programming
systems of their own. It’s also the one that needs most foreknowledge, which is
why this chapter is in this position.

TEX is basically a programming language for typesetting. As such, it allows you
to define macros, which are little (or large) program-like sequences of commands
with a name which can be used as a command itself. This in effect makes a macro a
shorthand for a sequence of operation you wish to perform more than once. LATEX
is in fact just a large collection of such macros.

Macros can be arbitrarily complex. Many of the ones used in the standard LATEX
packages are several pages long, but as we will see, even short one-liners can very
simply automate otherwise tedious chores and allow the author to concentrate on
the most important thing; writing.

7.1 Simple replacement macros

In its simplest form, a LATEX macro can just be a straightforward text replacement
of a phrase to avoid lengthy retyping with the possibility of misspelling something
each time you need it, eg

\newcommand{\EF}{European Foundation for the
Improvement of Living and Working Conditions}

Formatting Information
�� ��181

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 182 -- #218 i
i

i
i

i
i

CHAPTER 7. PROGRAMMABILITY

Put this in your Preamble, and you can then use \EF in your document and it
will typeset it as the full text. Remember that after a command ending in a letter
you need to leave a space to avoid the next word getting gobbled up as part of the
command (see the Note on p. 16). If you want to force a space to be printed after
the expansion, use a backslash followed by a space, eg

The \EF\ is a member institution of the Commission
of the European Union.

As you can see from this example, the \newcommand command takes two arguments:
the name you want to give the new command, and the expansion to be performed
when you use it, so there are always two sets of curly braces after a \newcommand.
The names of new commands created like this MUST be made of the letters A–Z
and a–z only, andmust not be the names of existing commands.

7.2 Macros using information gathered previously

A more complex example is the macro \maketitle which is used in almost
every LATEX document to format the title block. In the default document classes
(book, report, and article) it performs small variations on the layout of a centred
block with the title followed by the author followed by the date, as we saw in
section 2.3 on page 45.

If you inspect one of the default document class files, such as report.cls, you
will see \maketitle defined (and several variants called \@maketitle for use in
different circumstances). It uses the values for the title, author, and date which are
assumed already to have been stored in the internal macros \@title, \@author, and
\@date by the author using the matching \title, \author, and \date commands
in the document before using the \maketitle command.

This use of one command (eg \title) to store the information in another (eg
\@title) is a commonway of gathering the information from the user.

\documentclass{report}
\usepackage{fontspec,xcolor}
\setsansfont{TeX Gyre Adventor}
\makeatletter
\renewcommand{\maketitle}{%

\begin{flushleft}%
\sffamily
{\Large\bfseries\color{red}\@title\par}%
\medskip�� ��182 Formatting Information

report.cls

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 183 -- #219 i
i

i
i

i
i

7.2. MACROS USING INFORMATION GATHERED PREVIOUSLY

The @ sign in command names

The use of macros containing the @ character prevents their accidental misuse by

the user because such commands are designed for use in packages and classes,

and are disallowed in document text. To use them in your Preamble (eg to redefine

\maketitle), you have to allow the @ sign to temporarily become a ‘letter’ using the

\makeatletter command so the @ can be recognised in a command name (and

remember to turn it off again afterwards with the \makeatother command — see

item1 in the list on p. 1831).

{\large\color{blue}\@author\par}%
\medskip
{\itshape\color{green}\@date\par}%
\bigskip\hrule\vspace*{2pc}%

\end{flushleft}%
}
\makeatother
\begin{document}
\title{Practical Typesetting}
\author{Peter Flynn\\Silmaril Consultants}
\date{June 2024}
\maketitle
\end{document}

Insert this immediately before the \begin{document} in the sample file in the first
listing, and make sure you have used the xcolor package. Typeset the file and you
should get something like Figure 7.1 on the following page.

In this redefinition of \maketitle, we’ve done the following:

1. Enclosed the changes in \makeatletter and \makeatother to allow us to
use the @ sign in command names;1

2. Used \renewcommand and put \maketitle in the first pair of curly braces
after it;

3. Opened a second pair of curly braces to hold the new definition. The closing
curly brace of this pair is immediately before the \makeatother;

1 If youmove all this Preamble into a package (.sty) file of your own, youdon’t need these commands:
the use of @ signs in command names is allowed in package and class files.

Formatting Information
�� ��183

http://www.ctan.org/pkg/xcolor
.sty

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 184 -- #220 i
i

i
i

i
i

CHAPTER 7. PROGRAMMABILITY

4. Inserted a flushleft environment so the whole title block is left-aligned;

5. Used \sffamily so the whole title block is in the defined sans-serif typeface;

6. For each of \@title, \@author, and \@date, we have used some font
variation and colour, and enclosed each one in curly braces to restrict the
changes just to each command. The closing \par of each one makes sure
that multiline title and authors and dates would get typeset with the relevant
line-spacing;

7. Added some flexible space between the lines, and around the \hrule
(horizontal rule) at the end;

Note the % signs after any line ending in a curly brace, to make sure no intrusive
white-space find its way into the output. These aren’t needed after simple
commands where there is no curly brace because excess white-space gets gobbled
up there anyway.

Figure 7.1 – Example of reprogrammed title layout

Practical Typesetting
Peter Flynn
Silmaril Consultants
June 2024

1

�� ��184 Formatting Information

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 185 -- #221 i
i

i
i

i
i

7.3. MACROS WITH ARGUMENTS

Exercise 31 – Rewriting the title

Add the code above to your test document (or create a new one), then add title, au-

thor, and date, and make your new title.

7.3 Macros with arguments

But macros are not limited to text expansion or the reproduction of previously-
stored values. They can take arguments of their own, so you can define a command
to do something with specific text you give it. This makes them much more
powerful and generic, as you can write a macro to do something a certain way, and
then use it hundreds of times with a different value each time.

We mentioned earlier (in section 6.2.6 on page 175) the idea of making new
commands to put specific classes of words into certain fonts, such as \foreign or
\product. Here’s an example for a new command \tmproduct, which also indexes
the product name and adds a trademark sign:

\newcommand{\tmproduct}[1]{%
\textit{#1}\texttrademark
\index{#1@\textit{#1}}%

}

If I now type \tmproduct{Velcro}, I get Velcro™ typeset, and if you look
in the index, you’ll find this page referenced under Velcro. Let’s examine
what this does:

1. The macro is specified as having one argument (that’s the [1] in the
definition). This will be the product name you type in curly braces when
you use \product. Macros can have up to nine arguments.

2. The expansion of the macro is contained in the second set of curly braces,
spread over several lines (see item5 in the list on p. 1865 on the following
page for why).

3. It prints the value of the first argument (that’s the #1) in italics, which is
conventional for product names, and adds the \texttrademark command.

Formatting Information
�� ��185

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 186 -- #222 i
i

i
i

i
i

CHAPTER 7. PROGRAMMABILITY

4. Finally, it creates an index entry using the same value (#1), making sure that
it’s italicised in the index (see the list item ‘Font changes’ section 5.4.1 on
page 136 to remind yourself of how indexing something in a different font
works).

5. Typing this macro over several lines makes it easier for humans to read. I
could just as easily have typed

\newcommand{\product}[1]{\textit{#1}\index{#1@\textit{#1}}}

but it wouldn’t have been as clear what I was doing.

White-space after curly braces in definitions

The rules for white-space in the Note on p. 16 also apply during command definition:

for example the linebreak and spaces after \texttrademark in the \tmproduct
example above don’t matter (fourth rule).

The additional rule mentioned for command definition is that when an opening or

closing curly brace comes at the end of a line, any newline or space after it will cause

a space to be included in the output.

To prevent this, end each such line with a comment character (%) as in the first and

third lines of the \tmproduct example. The comment character stops LATEX from

reading the newline at all, so it won’t get turned into an unwanted space when the

macro is used. LATEX usually ignores spaces at the start of macro lines anyway, so

indenting the following lines for readability is ‘mostly harmless’.

In section 1.10.2 on page 27 we mentioned the problem of frequent use of
unbreakable text leading to poor justification or to hyphenation problems. A
solution is to make a macro which puts the argument into an \mbox with the
appropriate font change, but precedes it all with a conditional \linebreak which
will make it more attractive to TEX to start a new line.

\newcommand{\var}[1]{\linebreak[3]\mbox{\ttfamily#1}}

This only works effectively if you have a reasonably wide setting and paragraphs
long enough for the differences in spacing elsewhere to get hidden. If you have to
do this in narrow journal columns, you may have to adjust wording and spacing
by hand occasionally.�� ��186 Formatting Information

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 187 -- #223 i
i

i
i

i
i

7.4. NESTED MACROS

7.4 Nested macros

Here’s a slightly more complex example, where one macro calls another. It’s
common in normal text to refer to people by their forename and surname (in
that order), for example Donald Knuth, but to have them indexed as surname,
forename. This pair of macros, \person and \reindex, automates that process to
minimise typing and indexing.

\newcommand{\person}[1]{#1\reindex #1\sentinel}
\def\reindex #1 #2\sentinel{\index{#2, #1}}

The digit 1 in square brackets means that the \person command has one
argument, so you put the whole name in a single set of curly braces, eg
\person{Don Knuth}.

1. The first thing the macro does is output #1, which is the value of the
argument, what you typed, just as it stands, so the whole name gets typeset
exactly as you typed it.

2. Next, it uses the \reindex command defined underneath. This uses a
special feature of Plain TEX macros, which use \def instead of the LATEX
\newcommand (see the panel ‘Plain TEX’s \def vs LATEX’s \newcommand’ on
p. 188): they too can have multiple arguments but you can separate themwith
other characters to forma pattern.
In this example (\reindex), TEX is expecting to see a string of characters (#1)
followed by a space, followed by another string of characters (#2) followed
by a command (\sentinel), which is a dummy to terminate the second
string. In effect this pattern makes this command a function for splitting a
name into two halves on the space between them, so the two halves can be
handled separately. The rest of the \reindex command can now deal with
the two halves of the name separately.

3. The \person command invokes \reindex and follows it with the name
you typed (which of course contains a space) plus the dummy command
\sentinel (which is just there to signal the end of the name). Because
\reindex is expecting two arguments separated by a space and terminated
by a \sentinel, it sees ‘Don’ and ‘Knuth’ as two separate arguments.

4. Finally, \reindex outputs the second argument followed by the first argument,
using \index, so that it indexes the name in reverse order, surname first,
which is exactly what we want.

Formatting Information
�� ��187

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 188 -- #224 i
i

i
i

i
i

CHAPTER 7. PROGRAMMABILITY

Plain TEX’s \def vs LATEX’s \newcommand

Commands defined with \def can be redefined (and therefore overwritten) without

warning. Commands defined with \newcommand can only be redefined with

\renewcommand, which is a valuable safety lock.

Don’t try this at home alone, folks! This example here is safe enough, but you should

probably avoid using \def for now.

A book or report with a large number of personal names to print and index could
make significant use of this to allow them to be typed as \person{Leslie Lamport}
and printed as Leslie Lamport, but have them indexed as ‘Lamport, Leslie’ with no
additional effort on the author’s part at all.

7.5 Macros and environments

As mentioned in section 4.6.3 on page 113, it is possible to define macros to capture
text in an environment and reuse it afterwards. This avoids any features of the
subsequent use affecting the formatting of the text.

One example of this uses the facilities of the fancybox package, which defines a
variety of framed box commands to display your text, but they require a pre-formed
box as their argument, so the package provides a special environment Sbox which
‘captures’ your text for use in these boxes.

Here we put the text in a minipage environment because we want to change
the width; this occurs inside the Sbox environment so that it gets typeset into
memory and stored in a box. It can then be ‘released’ afterwards with the command
\TheSbox as the argument of the \shadowbox command (and in this example it
has also been centred).�� ��188 Formatting Information

http://www.ctan.org/pkg/fancybox

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 189 -- #225 i
i

i
i

i
i

7.5. MACROS AND ENVIRONMENTS

\begin{Sbox}
\begin{minipage}{3in}
This text is formatted to the specifications
of the minipage environment in which it
occurs.

Having been typeset, it is held in the Sbox
until it is needed, which is after the end
of the minipage, where you can (for example)
align it and put it in a special framed box.
\end{minipage}
\end{Sbox}
\begin{center}
\shadowbox{\TheSbox}
\end{center}

�

This text is formatted to the specifications
of the minipage environment in which it
occurs.

Having been typeset, it is held in the Sbox
until it is needed, which is after the end of
the minipage, where you can (for example)
centre it and put it in a special framed box.

The point about this kind of construct is that it can be turned into an
environment of your own, so you can reuse it wherever you need (the colouring is
left as an exercise to the reader):

\usepackage{fancybox,fontawesome}
\newenvironment{warning}[1]{%

\begin{Sbox}\begin{minipage}{8cm}%
\subsubsection*{\fa-fire-extinguisher\ #1}}

{\end{minipage}\end{Sbox}\begin{center}
\shadowbox{\TheSbox}\end{center}}

...
\begin{warning}{Open and Close}
Make sure all your open-curly-braces are matched

Formatting Information
�� ��189

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 190 -- #226 i
i

i
i

i
i

CHAPTER 7. PROGRAMMABILITY

by close-curly-braces and that every \verb+\begin+
is matched by an \verb+\end+.
\end{warning}

Open and Close

Make sure all your open-curly-braces are matched by close-curly-braces and that

every \begin is matched by an \end.

Here’s another one, this time to create a two-column chapter with the title spread
across both columns (thanks to users onDiscord for this one):

\usepackage{multicol,lipsum}
\newenvironment{spanchapter}[1]

{\begin{multicols}{2}[\chapter{#1}]}
{\end{multicols}}

...
\begin{spanchapter}{The introduction to it all}
\lipsum[1]
\end{spanchapter}

7.6 Reprogramming LATEX’s internals

LATEX’s internal macros can also be reprogrammed or even rewritten entirely,
although doing this can require a considerable degree of expertise. Simple changes,
however, are easily done. These examples can also be done with the appropriate
package, but they are done by hand here as examples of how it works.�� ��190 Formatting Information

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 191 -- #227 i
i

i
i

i
i

7.6. REPROGRAMMING LATEX’S INTERNALS

7.6.1 Changing numbering levels

Recall that LATEX’s default document structure for the Report document class uses
Chapters as the main unit of text, whereas in reality most reports are divided into
Sections, not Chapters (see footnote7 on page 50). The result of this is that if you
start off your reportwith \section{Introduction}, it will print as

0.1 Introduction

which is not at all what you want. The zero is the (missing) chapter number,
because no chapter has been started. But this numbering is controlled by macros,
and you can redefine them. In footnote2 on page 83 we said that every counter
automatically gets a related command beginning with \the.... In this case
what we need to change is that command \thesection because the way the
counters are set up makes it reproduce the value of the counter section (see
section 4.1.6 on page 84) plus any higher-level value (eg chapter). It’s redefined
afresh in each document class file, using the command \renewcommand (in this
case in report.cls):

\renewcommand\thesection{\thechapter.\@arabic\c@section}

You can see it invokes \thechapter (which is defined elsewhere to reproduce the
value of the chapter counter), and it then prints a dot, followed by the Arabic
value of the counter called section (that \c@ notation is LATEX’s internal way of
referring to counters). You can redefine this in your Preamble to simply leave out
the reference to chapters:

\renewcommand{\thesection}{\arabic{section}}

I’ve used the more formal modern method of enclosing the command being
redefined in curly braces. For largely irrelevant historical reasons these braces
are often omitted in LATEX’s internal code (as you may have noticed in the
example earlier). And I’ve also used the ‘public’ version of the \arabic
command to output the value of section (LATEX’s internals use a ‘private’ set
of control sequences containing @-signs, designed to protect them against being
changed accidentally).

Now the introduction to your report will start with:

1 Introduction

Formatting Information
�� ��191

http://www.ctan.org/pkg/report
report.cls

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 192 -- #228 i
i

i
i

i
i

CHAPTER 7. PROGRAMMABILITY

Never change the installation files

What’s important in making this type of modification is that you DO NOT (ever) alter the

original installed document class file report.cls. Instead you copy the command

you need to change into your own document Preamble, or a private package file, and

modify that instead. It will then override the default because it will get loaded after

the document class and replace the original definition.

(XML users may recognise that this is the reverse of the way that Local Subset modific-

ations work with an XML Document Type Description (DTD), where the first declaration

always holds, and subsequent redeclarations are ignored.)

7.6.2 Changing list item bullets

As mentioned earlier, here’s how to redefine a bullet for an itemized list, with
a slight tweak:

\usepackage{bbding}
...
\renewcommand{\labelitemi}{%

\raisebox{-.25ex}{\small\PencilRight}}

Here we use the bbding package which has a large selection of ‘dingbats’ or little
icons, and we change the label for top-level itemized lists (\labelitemi, find these
in any document class file) to make it print a right-pointing pencil (the names for
the icons are in the bbding package documentation: see section 3.1.3 on page 60
for how to get it).

In this case, we are also using the \raisebox command within the redefinition
because it turns out that the symbols in this font are positioned slightly too high for
the typeface we’re using. The \raisebox command takes two arguments: the first
is a dimension, how much to raise the object by (and a negative value means ‘lower’:
there is no need for a separate \lowerbox command); and the second is the text you
want to affect. Here, we are shifting the symbol down by 1/4ex (see section 1.10.1
on page 26 for a list of dimensional units LATEX can use). We also make the icon
slightly smaller to go better with the font we are using.

There are label item commands for each level of lists (1–4) which have command
names ending in Roman numerals (i–iv) because of the rule that command names
can only use letters. Thus to change the icon for the fourth-level list, modify�� ��192 Formatting Information

report.cls
http://www.ctan.org/pkg/bbding
http://www.ctan.org/pkg/bbding

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 193 -- #229 i
i

i
i

i
i

7.6. REPROGRAMMING LATEX’S INTERNALS

\labelitemiv. There is a vast number of symbols available, not just bbding: see
the TEX Symbol List for a comprehensive list.

Formatting Information
�� ��193

http://www.ctan.org/pkg/bbding

i
i

‘beginlatex’ -- 14th July 2024 -- 22:51 -- page 194 -- #230 i
i

i
i

i
i

